
Impact of Learning Rate, Optimizer, Learning Rate
Scheduler and Batch Size on OOD generalization in

Deep learning
Devikalyan Das, Pranay Raj Kamuni, Saurabh Kumar Pandey

Visual Computing, Saarland Univeristy

Abstract—Deep learning is a sub-branch of AI. Due to it’s
representational learning capabilities in real world problems,
it’s popularity and research bucket is increasing day by day,
with endless amount of new models being introduced every day,
performing better than the previous one. The core assumption
of independent and identically distributed makes the learning
problem simple for these models but introduces generalization
problems in real world applications. In this project we investi-
gated the effect of different optimizers, hyper-parameters, batch-
sizes, etc on the OOD generalization performance of a deep
neural network.

I. INTRODUCTION

In recent times AI has taken over the world by storm.
Today web searches, shopping, social media, automobiles,
cell phones all are powered by AI in one form or the other.
Knowingly or unknowingly we interact with these systems
every day, thus making them an integral part of our daily
life. In the last few decades the research and applications
in the area of AI has impacted our lives more than ever,
with each day a new system being introduced to solve a task
once thought unsolvable. The heart of all these advances in
AI is deep learning. Traditional machine learning techniques
were very limited in the sense that they required a lot of
domain knowledge to design tools to extract features or get a
feature representation to use it with a learning system in-order
to accomplish the task at hand. These methods were neither
scalable nor widely adopted, if we leave few of the exceptions.
The introduction of representation learning methods that can
learn patterns directly from the data changed the field for ever.

As more and more industries are adopting deep learning
solutions every day, its very important to validate the gen-
eralization capabilities of these models(specially in mission
critical systems). The underlying assumption of all deep learn-
ing models is the independent and identically distributed(i.i.d)
data. In simple terms the model assumes the training and test
data comes from the same distribution, which is not true in
practical scenarios. For instance a good image classifier that
can separate cows from camels with high accuracy suddenly
fails when an image of a cow on a beach is provided. It turns
out that instead of learning the features of cows or camels,
in this case the model learns the background to differentiate
between the two subjects at test(i.e cows are generally in
images with green background which represents farms). There

are few approaches suggested to overcome the OOD gener-
alization issues[6],[2] i.e Invariant risk minimization(IRM).
The idea of IRM is simply to replace good old empirical
risk minimization(ERM) with a different risk which forces the
model to learn features that are invariant under different data
distribution. All though the idea seems very promising, a lot of
criticism and theoretical evidence were presented to disprove
the claims of IRM [3],[7] i.e IRM at best will be as good as
ERM but not better. Instead of searching for a new direction,
we decided to evaluate OOD generalization with tools at hand
i.e different optimizers, batch sizes etc, in-order to understand
the effect these fundamental choice of a deep neural network
model have on OOD generalization.

II. METHODS

A. Optimizers Used

The gradient descent algorithm is the most useful workhorse
for minimizing loss functions in practice. It is a way to min-
imize an objective function J(θ) parameterized by a model’s
parameters θ ∈ Rd by updating the parameters in the opposite
direction of the gradient of the objective function ∇θJ(θ) w.r.t.
to the parameters. As mentioned in the title, for our analysis
we experimented with 4 differnet optimizers.

1) Mini-batch SGD[8]: Mini-batch Stochastic gradient de-
scent (SGD) computes the gradient of the cost function
w.r.t. to the parameters θ for a mini-batch of training
dataset.

xt+1 := xt − γt∇fi (xt)

2) RMSProp[1]: Root Mean Squared Propagation, is an
extension of gradient descent and the AdaGrad version
of gradient descent that uses a decaying average of par-
tial gradients in the adaptation of the step size for each
parameter. The use of a decaying moving average allows
the algorithm to forget early gradients and focus on
the most recently observed partial gradients seen during
the progress of the search, overcoming the limitation of
AdaGrad.

E
[
g2
]
t
= βE

[
g2
]
t−1

+ (1− β)

(
δC

δw

)2

wt = wt−1 −
η√
E [g2]

δC

δw



3) Adam[4]: Adaptive Moment Estimation is another
method that computes adaptive learning rates for each
parameter. In addition to storing an exponentially decay-
ing average of past squared gradients vt like Adadelta
and RMSprop, Adam also keeps an exponentially decay-
ing average of past gradients mt, similar to momentum.

mt = β1mt−1 + (1− β1) gt

vt = β2vt−1 + (1− β2) g
2
t

mt and vt are estimates of the first moment (the mean)
and the second moment (the uncentered variance) of the
gradients respectively, hence the name of the method. As
mt and vt are initialized as vectors of 0’s, the authors
of Adam observe that they are biased towards zero,
especially during the initial time steps, and especially
when the decay rates are small (i.e. β1 and β2 are close
to 1). They counteract these biases by computing bias-
corrected first and second moment estimates:

m̂t =
mt

1−βt
1

v̂t =
vt

1−βt
2

They then use these to update the parameters just as we
have seen in Adadelta and RMSprop, which yields the
Adam update rule:

θt+1 = θt −
η√

v̂t + ϵ
m̂t

4) AdamW[5]: An extension of the Adam optimizer with
an addition of weight decay to its optimization to move
towards convergence at a faster pace, the details can be
looked on the blog by fast.ai team.

B. Dataset

We are using the NICO dataset, which is from an image
recognition competition which contains data labeled in 60
categories, we use the 15 most popular categories for our
project, which are present in different domains/context like
autumn, grass, rock, outdoor etc. to perform our experiments.
We use all the data from n-1 contexts, shuffle them to use it
for training, then take the nth context related data (different
from the n-1 context related data used for training) to use
it for validation to check speed and performance at which it
generalizes when the distribution is out of context.

C. Model

For our case we used the very popular CNN model, the
ResNet 34 model from the list of pytorch models(not a model
with pretrained weights, as it may give wrong results when we
perform our experiments) and perform our image recognition
task.

III. EXPERIMENTS

For this project, our goal is to achieve better and
faster OOD generalization by investigating the influence
of choosing different batch sizes and learning rates along
with their schedulers. We have used various established
optimization algorithms such as ADAM, SGD, RMSPROP
and ADAMW for comparing the optimization performance
and speed for our task.

For each experimental condition (choice of optimizer, batch
size, learning rate with and without schedulers), the model was
trained on 5 contexts with 15 classes in each context and eval-
uated on a validation set belonging to a separate context. Batch
sizes of 64 and 128 were used in the experiments. We have
kept the number of epochs fixed at 50 for every experiment
to find out rate of convergence of different optimizers. We
selected learning rate of 0.01 and 0.0001 to understand the
impact of various learning rates. Also, we used MultiStepLR
as learning rate scheduler and chose to reduce the learning rate
by a factor of 0.1 after every 20 epochs as training progresses
which will ensure stability. For this classification task, Cross-
Entropy loss function was used.

A. Figures and Tables

The loss and accuracy have been computed during training
and validation have been plotted. The comparison of training
loss for batch size of 64 with learning rate of 0.0001 has been
provided in Figure 4.

IV. RESULTS

In the figure1 4 we present the results from the experiment
related to usage of 4 different optimizers, with a constant
lr of 1e-4, batch size = 64, and with 2 settings of LR
schedulers(please refer the legend for more details), and below
are the most important takeaways(the plots are smoothed using
exponentially weighted function, alpha = 0.6):

• The first thing we notice is that the SGD optimizer does
not show an increase in train or validation accuracy and
no proper decrease in the loss values, this could mostly
imply that the learning rate used here is not proper for
convergence given the graph of the validation loss, it
looks like the LR was too low, hence even the case with
LR scheduler shows no improvement.

• The second most important thing we see is the validation
loss/accuracy is very erratic and doesn’t move smoothly
in all the cases, it is because of the nature of the
problem, as the train and valid datasets are from different
distribution, and its effects are clearly visible here.

• We see that the optimizer with LR schedulers perform
relatively better when compared to their counterparts
without any LR scheduler. This shows that the model
converges faster when we first reach near a good minima
and slowly try to settle on to the global minima.

• In case of Adam and RMSProp optimizer without a
scheduler, we see that after a certain point the loss value
gets constant and the accuracy keeps reducing, this could



Fig. 1: Train Loss for various optimizer with batch size of 64.

mean that due to high LR value, the optimizer made the
model reach a local minima and started settling there,
whereas having an LR scheduler has made things easier
for the optimizer for faster convergence and generaliza-
tion.

• In case of AdamW optimizer the training accuracy is
pretty high when compared to the Adam and RMSProp
optimizers with an scheduler but the validation accu-
racy shows that AdamW optimizer has relatively lower
accuracy when compared to the other two, this could
mean that the AdamW optimizer is over-fitting the model,
hence bad results on validation set.

• We see that the batch size is not really a huge factor for
faster convergence and generalization of models when we
use OOD datasets(refer apendix for images)

• From 5,4 for lr 1e-2, we see that the model has converged
too quickly to a sub optimal solution, no matter which
optimizer is used. As we see in the plots, the training
loss has been sub optimally settled at a very high value,
and even the use of LR scheduler has not shown any
good progress. Also the erratic changes in the validation
accuracy confirms that the model has not been trained

properly for the task.

V. CONCLUSION

From the results we can conclude that although we see a
higher training accuracy in the case of AdamW optimizer(with
or without LR scheduler), we observe that the validation
accuracy is lower and the validation loss is not decreasing,
suggesting that the model is over-fitting on training data, but
when it comes to Adam and RMSProp optimizer with an LR
scheduler, we see that although the training accuracy is not
as high as the AdamW optimizer, the validation accuracy is
relatively higher and the validation loss values are decreasing
gradually. Hence we can say that the Adam + LR scheduler or
RMSProp + LR schedulers are a good option for optimizing
the models with an OOD dataset.
As a future work, we can extend or study on different
learning rate values, various other optimizer, with different
LR scheduling techniques, and other techniques like label
smoothing etc.

ACKNOWLEDGEMENTS

We are grateful for kaggle to provide us the platform to train
our models, and NICO Challenge 2022[9] for the wonderful
challenge and providing us the dataset.



REFERENCES

[1] Rmsprop. https://www.cs.toronto.edu/∼tijmen/csc321/slides/lecture
slides lec6.pdf.

[2] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz.
Invariant risk minimization, 2019.

[3] Ruocheng Guo, Pengchuan Zhang, Hao Liu, and Emre Kiciman. Out-
of-distribution prediction with invariant risk minimization: The limitation
and an effective fix, 2021.

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization, 2014. cite arxiv:1412.6980Comment: Published as a conference
paper at the 3rd International Conference for Learning Representations,
San Diego, 2015.

[5] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization.
In International Conference on Learning Representations, 2019.

[6] Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference
using invariant prediction: identification and confidence intervals. 2015.

[7] Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. The risks of
invariant risk minimization, 2020.

[8] Ohad Shamir and Tong Zhang. Stochastic gradient descent for
non-smooth optimization: Convergence results and optimal averaging
schemes. In Sanjoy Dasgupta and David McAllester, editors, Proceedings
of the 30th International Conference on Machine Learning, volume 28
of Proceedings of Machine Learning Research, pages 71–79, Atlanta,
Georgia, USA, 17–19 Jun 2013. PMLR.

[9] Renzhe Xu Han Yu Zheyan Shen Peng Cui Xingxuan Zhang, Yue He.
Nico++: Towards better benchmarking for domain generalization, 2022.

APPENDIX

Please find the images below for various experiments of our
project with different setups:

1) Learning rate = 1e-2, 1e-4
2) Batch Size = 64, 128
3) With LR scheduler, without LR scheduler
4) Optimizer = Adam, SGD, AdamW, RMSProp
For more details regarding the experiments and the imple-

mentation, please clone the GitHub repo.https://github.com/
DevikalyanDas/Optimization-In-ML

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://github.com/DevikalyanDas/Optimization-In-ML
https://github.com/DevikalyanDas/Optimization-In-ML


Fig. 2: Train Loss for various optimizer with batch size of 64
and LR = 1e-2. Fig. 3: Train Loss for various optimizer with batch size of 128

and LR = 1e-2.



Fig. 4: Train Loss for various optimizer with batch size of 64
and LR = 1e-4.

Fig. 5: Train Loss for various optimizer with batch size of 128
and LR = 1e-4.


	Introduction
	Methods
	Optimizers Used
	Dataset
	Model

	Experiments
	Figures and Tables

	Results
	Conclusion
	References
	Appendix

